Smart buildings for improved air quality, energy saving, carbon capture - Sally R

 
 

air quality / smart buildings / healthy buildings / energy efficiency / green building / hvac / indoor farming

Welcome to episode 45 of the Green & Healthy Places podcast in which we discuss the themes of wellbeing and sustainability in real estate today.

In this episode I’m in Sweden talking to Fredrik Tunberg, CEO of Sally R, a cloud-based intelligent ventilation solution that uses algorithms to optimize indoor air quality while reducing overall energy consumption related to the HVAC system.

We discuss how buildings have traditionally had to make guesstimates about how much ventilation they will need, and then applies a blanket approach throughout the day, throughout the building, whereas the latest technology, sensors and IOT enabled software completely changes the game, opening up opportunities for far more tailored, efficient and cost effective solutions. Which is essentially what Sally R do.

As Fredrik points out, high quality indoor air does not need to cost more, quite the opposite in fact, once you can see the air in a building and map that against usage data, and feedback from a network of air quality monitors, it’s a complete game changer that also saves on energy use in the process.

Finally, they are also getting into Carbon capture in indoor farms, but I’ll Fredrik explain that part. 

healthy green building air quality sally r biofilico

Talking indoor air quality in healthy buildings and energy efficient green buildings with Fredrik Tunberg of SALLY R

smart building hvac air quality energy sally r biofilico

Let's start with the basics. So, when you're describing SALLY R, what's the problem that you're solving here around HVAC and mechanical ventilation system optimization in healthy buildings?

Fredrik Tunberg

As part of the increasing energy prices, of course, across Europe across the world, as well as the pandemic, that we're hopefully seeing the end of. I believe that real estate and especially commercial real estate and public buildings starting to open up will create some very important questions for the real estate owners, as well as sales managers, and how to tackle these two issues - energy efficiency and indoor air quality. That's where Sally R can really make a difference.

Matt Morley

So there's two pieces that you mentioned, effectively, the building energy cost, the energy implications of running a mechanical ventilation system in a building, and also how that mechanical ventilation system relates to airborne diseases, such as COVID. So let's look at the first one. So the energy costs I get, how do you how to get involved or integrate into that, start measuring it and make improvements?

Indoor air quality and energy efficiency

Fredrik Tunberg

Yeah, and in our case, those two different pieces are very intertwined into each other. So overall, we're trying to really prove to people that well, an increase, and more secure indoor air quality, actually doesn't mean that you have to spend that the consumer energy is rather the opposite. 

It’s a contradiction that clean air costs more, it’s actually the other way around. So an optimized indoor air quality in a healthy building will actually provide you with substantial green building energy savings.
— fredrik tunberg

smart buildings and hvac systems

You have to bear in mind that the traditional way of controlling HVAC has been the same for many years. With the help of technology breakthroughs, such as big data, connectivity, and wireless sensors, we can manage that data to control very complex systems within buildings.
— fredrik tunberg, ceo , sally r


Matt Morley

So for someone who's perhaps not familiar with traditional building management systems, or facilities management, you said it's a bit of a dinosaur, and it hasn't really upgraded. So what does that look like for someone who's not familiar with it, obviously, you know, natural ventilation is where we came from. And then at some point, we started creating pressurized, mechanically ventilated buildings with HVAC air conditioning systems. And over the last, say, 20 years or so, or more, how has that? What's that look like?

building management systems in healthy buildings

Fredrik Tunberg

Yeah, this is different, depending on what kind of building you're talking about. And obviously, also what kind of country you're in, from our experience from, from Sweden, Scandinavia, and Europe, is that evolved buildings, once they were built, they were are the someone from the BMS system provider or their partners, they were in the building and programming a unique solution for that building. And that was obviously based on a lot of assumptions. And these assumptions goes hand in hand with what like the building would be intended, intended views, and all different kinds of things.

So one practical example would be one, one building that we implemented our solution and very recently, where they 2025 years ago, when the when the building was built, the HR system was programmed. And it was programmed based on the assumption like, Alright, let's do 40% return here. And it was just an assumption that that would work out and that that was a good level. It is not based on any kind of facts and figures, because and to be honest, like 25 years ago, you couldn't do that. And what we can do now is that we can, we can allow the building to choose his own level of returner, depending on how it is being used. What is happening on the outside of the building, and, and taking into a lot of different factors concerning the indoor air quality into account in order to calculate optimal performance for the system.

Matt Morley

So then that links in with the idea of the big data, right? Because you're then using global benchmarks to understand how it should be done comparing that with what's actually happening and trying to find gaps discrepancies between the two and then making the adjustments to how the air ventilation system is operating. Is that right? Yeah,

energy efficiency in a smart building

Fredrik Tunberg

Absolutely, absolutely. So that's one way to look at it. And then there's other other types of buildings like we're optimizing a large shopping mall in Stockholm, it's the largest one is going to need for more mall of Scandinavia. So it's, it has a good name. And that building was built in a was I believe it was finished, like in 2015, or 2016. So it's very, it's very new, it was a huge investment, obviously, for the real estate company. And so it's very sophisticated, everything that is within the building. And still, we managed to save around 40-42% of the energy being used with HVAC system, simply because we were more reactive to whatever was going on. And this was especially so during the pandemic, of course, when the building had a lot lower people occupants passing through. And again, was based on assumptions on how how it would be used the building. And, yeah, so there's a lot to be done.

automated hvac in a smart building

Matt Morley

So if I can create an analogy, would it be basically like someone going in to a building, turning on all the lights at a certain point on the dinner and saying, Well, that's it. That's how we operate the light system between nine o'clock and five o'clock? And you're saying, well, actually, you might need certain different intensities during the day. And you might need perhaps a little bit on a on a weekend, or you might need some later in the evening? Because that's actually how the building's being used. Would that be a fair analogy to draw, you're trying to connect the the usage by the occupants in the building with the amount of air ventilation and circulation that they need is that, yeah, absolutely

Fredrik Tunberg

That's definitely a huge part of it. And then we also have different ways of like, analyzing the building, as well. So we are measuring and we're constantly calculating the loads within the building and not not just the heating load, but are also like the load concerning co2, we can calculate any kind of boat, we can calculate and monitor VOC load process. And by doing it that way, we can predict what will happen a lot better than then what would normally be the case, as well. So there's a lot of different things, but those definitely a good analogy as well.

hvac energy smart building sally r biofilico

Matt Morley

VOCs, volatile organic compounds, basically, the nasty chemicals that are off gassing from things like adhesives, glues, carpets, furniture in an office.
— matt morley

So for the listeners who perhaps aren't aware that toxic chemicals can be found in office furniture, the reality is they often can, especially in fabrics, textiles, foams, paints, and cheap ceiling panels and what have you. So the importance of what you've just described, is, is really, I think, critical for for improved indoor air quality.

So if we look at the hardware and the software involved in making that happen, like what's, what's going on in terms of bringing pieces of kit into the building? Or is it a completely software based solution? Like how do you integrate into the building management system into the BMS?

Fredrik Tunberg

Yeah, there's, different ways to do that, of course, and we do a lot of different types of integration and implementations. But Sally R is in essence a software company. So we don't have our own hardware concerning this particular service. Rather, we would prefer to collaborate with with a partner and primarily, that would be the BMS company and the BMS provider, but it can also obviously be an IOT platform, for instance, or it can be a sensor, sensor company, providing sensors.

But we have also done integrations and implementations where we made use of a kind of a simple kind of each unit each gateway, but that is simply just because we want to cut corners. And this is primarily we do that primarily for older systems, older buildings, where they sometimes they don't even have an internet. It's not connected to the internet.

Matt Morley

So it strikes me as an example of smart building systems, right, but we're trying to connect the bill Seeing via your software with the daily realities of what's happening inside the building. So it's reactive rather than being passive. Do you? Do you just make a distinction between the air purification that's going on in the building and the air quality?

So like, is the software looking at purification rates that are happening? Do we need to consider that there's not enough purification beyond just the ventilation rates in the building, do you normally recommend that there is a complimentary strategy in terms of improving the indoor air quality beyond just ventilation or is that typically enough to remove the VOCs? Remove the co2?

indoor air quality and sally r software

Fredrik Tunberg

Yeah, and obviously, definitely depends on where in the world you are, and what kind of room but we will obviously like we, we see a lot of data we can see. And we can analyze that for the customer. But then it's obviously up to the customer to take actions based on that data. But it's not that uncommon, obviously, that we get questions like how do we how can we improve this further?

How, what measures do we need to take it apart from the software, and stuff like that, and then we like to be really, really frank about, we're not a consultancy in that way, there are others who are way much better than than us that providing advice on that. But any way we can to help is, obviously a bit.

we are not actually in this to to save energy, it might sound strange, but our standpoint is we want to secure indoor air quality, the energy saving is an extra benefit!
— Fredrik Tunberg, CEO, SaLLY R

Matt Morley

So then you'd imagine there being say, a network of head height air quality monitors throughout the building that there's the building management team are getting one source of data coming in, you then got what Sally are producing in terms of data, and you can start to see how the management team is building up a picture, right? of exactly what's what's going on. So how does that how does that take place?

For someone who's not familiar with that process? Yeah, so like you said that there, you're creating the data. And you're is it is the is the software making decisions on behalf of the building management team or the building management team having to take to sort of interpret the data that you're creating, and then manually create, implement changes, or is it automatically linked, now is

Fredrik Tunberg

Our software automates improvements in indoor air quality 100% based on whatever parameters, you as the building owner, or manager, want to achieve in the building in terms of indoor air quality.
— fredrik tunberg, ceo , sally r

And usually, there is a minimum value and a maximum value, and never to exceed the maximum value of course. And then the system the software would optimize within that can range and it will do that automatically. But it would also obviously pick up on any like discrepancies in in that performance as well. And for instance, we can easily analyze a abnormal high energy consumption within any kind of like fans or anything like that, that we can track back to, for instance, that filter change being needed.

So we can optimize that and we can we can optimize for other types of filters as well. So you can introduce more filtration, for instance, concerning knowledge, but then who are starting to talk more and more about TM one for instance. So we can we can definitely there's definitely room to improve more on the filtration side with an optimization.

Particulate Matter in indoor air quality

Matt Morley

So PM1 - we typically talk about PM10, which would be dust level particles, then PM 2.5, which is much smaller. Things like mold, VOCs and tiny little things, but PM1 would be airborne disease level?

Fredrik Tunberg

Yeah, exactly. I mean, noncredit to me, according to the WHO.

indoor farms and carbon capture

Matt Morley

Yeah. Okay. And and so you then have this other piece, right, you have this other element, which I think is a really interesting complement to, to what we've just been talking about around the the HVAC Building Management and this carbon capture and indoor farms. So where did that come from? What's that product about?

Fredrik Tunberg

Yeah, absolutely. So we will need to go back five or six years basically, because Sally R - our name to begin with is a tribute to Sally Right, the first female astronaut, US astronaut. So we basically turned to space in the beginning to find solutions to how our buildings can rely less on the outside air. Because we see problems with the outside air becoming more and more polluted. And a lot of energy consumption comes from the process of changing outside air into heated or cooled indoor air.

So when starting to look at ISS, and how they're solving the indoor air quality on the space station, we came across some some very like crucial, crucial things that need to solve. And one of them obviously, being the optimization of the whole service. And that's, that's our software today. Another part of it is being able to capture co2 from an HR system or from an indoor environment. So for the last three or four years, we've basically been digging into that and evaluating different technologies out there, and then coming up with our own technology in order to capture carbon efficiently from indoor environments. And then, obviously, like looking looking for for different solutions in how to offset that carbon.

But once you want to calculate what what would you do with the co2. And we saw this, this kind of new industry, it's not new, but it's, it's definitely on most people's radar these times. And it's concerning vertical farming and locally grown verbs that urban farming and container farming, there's a lot of buzz going on there. And one crucial part of sustainable indoor farming is being able to enrich the farming area with co2. And the the only solution that we've seen so far is to bring in like shoo, some tanks with co2 that quite often comes from natural gas. And that's not very sustainable. So we see a possibility here to kind of make one industry more sustainable by giving them the co2 and one industry, the real estate industry, both safe, safer and more energy efficient by capturing. So yeah, that was a long explanation, a monologue.

Matt Morley

So if that was say, just to understand, because I know some images on your website, they depict maybe like a rooftop indoor farm that could be on a could be on a an office building, for example, where they decided to go into that with a kind of, like a Yeah, a bubble, right? So you create this this glass house area where it's a protected environment? Would it have to work would only work in those that context? Or could it be, say, a vertical farm set up in the reception of a big building, for example? Or do you need an enclosed space? How is it? What are the applications? Like what do you need from your side?

Fredrik Tunberg

Well, we need an enclosed space in some way, in order to really have an effect on the co2 levels. So the so that you actually get an increase in yield on the crops. So they grow more and more co2 have a certain extent, of course. So that that is what you need. But we're also looking into different applications preferring more like traditional indoor farming, like traditional greenhouses, and particular than commercial greenhouses. And then we would actually capture the carbon from from ambient air instead, that would be more like direct air capture for it for a specific purpose. That's another another kind of application.

Circular Economy and green healthy buildings

Matt Morley

So you sort of have this circular economy concept, right? Where you're, we're trying to keep everything in the loop rather than and in this case, the co2 is kind of like the waste product that we want to keep in the loop to reuse to get more value from it.

Fredrik Tunberg

Absolutely. That is what we really want to achieve and we also want to kind of like waste from the general awareness but you can actually do this if faced with co2, and co2 is natural, it's in our air, he says that we have a bit too much of it these days. So we need to like we need to make something useful with it. And why not actually do or try to increase the production of healthy food, and especially locally grown healthy food? Because there's loads and loads of benefits with vertical farming, indoor farming, and being really, we can help one.

Matt Morley

So where do you go from here? In terms of building the business? bringing in new clients developing new products and services? Like how do you see this evolving over the next three to five years?

Fredrik Tunberg

Yeah, no, it's very exciting time here - the plan for this year is internationalization where we are at scaling up business as we're getting to new markets. obviously started out in Sweden and Scandinavia, but we're looking to expand into UK and further into Canada as well this year, concerning the carbon capture where we are now way more like a pre mature stage, but we're commercializing right now. We're getting our first first couple of clients, and we will continue to evaluate the performance on that technology. And so yeah, it will be a little bit divided. But we're, we'll have different places that we have our hands full.

Healthy buildings integrating Sally R software

Matt Morley

So let's take a potential building in central London. And there are certain parameters within which you can work or are there certain requirements in terms of going in? Does it need to be a certain genre or type of building or something that's built after a certain year in terms of its HVAC? Like, are there? Are there areas where you can't help? Are there areas where you can have more impact and more more positive results?

Fredrik Tunberg

Yeah, essentially, we don't, our software works for any kind of building anywhere. Basically, as long as you have mechanical ventilation, we can optimize that. But it's more of a matter of where we put our focus, as of today. So we focused deliberately on offices and retail primarily, but also on on more sensitive buildings, like schools and hospitals, elevate the health health sector. But we make the most difference in obviously, large buildings, obviously, less complex buildings. So open spaces, versus open spaces. And we can really make a difference where you have a lot of people coming in and changing the the occupancy, because then we can be casting a huge difference on the interview.

What is the cost of healthy building software?

Matt Morley

So it's a question that I'm nearly always asked when I'm proposing these kind of concepts and services to clients that I work with. So I'll map Okay, but what are the cost implications? And how much more is this gonna cost me? And often, my responses will look, there might be a little bit more upfront in terms of your capex, but then how long will it take you to pay that off in terms of operating costs once you open the building, and actually, it can often be within a space of two to three years.

But then the owner, if they're holding the property for that long, if they're redeveloping or constructing, building and then selling, then it's slightly different story I find, but when they're holding the building for at least a few years, there's often a discussion around well, what are your management and operational costs over the next three years? And how much can we save you on those? Is it a similar argument in terms of selling in a salary or service to a developer or landlord?

Fredrik Tunberg

Yeah, no, absolutely. And obviously, with the twist that we sell our service as a service, so So you would basically pay a monthly fee that is way lower than your energy savings. So I mean, from our perspective, there's actually no investments that basically like saving money or making money from day one, basically. But obviously, like in the in the startup phase, there can be certain investments that we need to do. And that could be relating, like investing in more sensors, for instance.

But the way that we figure is that well, you want sensors anyway, even if you're not going with that those are not selling your specific sensors. So whether or not whether or not you like it or not, you need the sensors. And then you can subscribe to our service and start saving entity as well as be comfortable with that it's actually locked in with security and oil quality, no matter what happens in the building or outside.

Matt Morley

So sensors you mean ventilation rates as in in inside the HVAC system or in terms of the air that's circulating in the occupied spaces?

Fredrik Tunberg

90% I would say that the sensors inside the HV system that is already in place, is a very rarely that we need to compliment those sensors. But what we want, it all depends on what type of building obviously, but in an in an office building, with a more traditional office building, with a lot of different roofs and stuff like that, we would need some more reference, measuring measurements in in the different groups so that we can securely control the indoor air quality. But as sensor costs, as the cost for sensors comes down even more, it's not a huge investment and maintain away. I would say, yeah, it's minimal compared to what other types of investment can do for themselves.

Matt Morley

That's a much easier sell than than solar panels on a roof. I can tell you from experience. Very good. So how can people learn more? How can they connect? How can they reach out and follow what you're doing?

Fredrik Tunberg

Yeah, w obviously have a website, which is fairly good. It's, it's getting more and more content on it. But we're also trying to stay as active as we possibly can on primarily LinkedIn. That's our channel of choice. And you're always happy to schedule a meeting with me or one of my colleagues to learn more as well. So we're always always eager to